Feet on the potential energy surface, head in the pi clouds
Author(s) -
Quentin A. Smith
Publication year - 2011
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/1048534
Subject(s) - potential energy surface , chemical physics , dispersion (optics) , potential energy , chemistry , pyridine , transition state , computational chemistry , benzene , saddle point , molecule , materials science , physics , atomic physics , quantum mechanics , organic chemistry , geometry , mathematics , catalysis
This work presents explorations of the potential energy surface of clusters of atoms and of the interactions between molecules. First, structures of small aluminum clusters are examined and classified as ground states, transition states, or higher-order saddle points. Subsequently, the focus shifts to dispersion-dominated π-π interactions when the potential energy surfaces of benzene, substituted benzene, and pyridine dimers are explored. Because DNA nucleotide bases can be thought of as substituted heterocycles, a natural extension of the substituted benzene and pyridine investigations is to model paired nucleotide bases. Finally, the success of the dispersion studies inspires the development of an extension to the computational method used, which will enable the dispersion energy to be modeled – and the potential energy surface explored – in additional chemical systems. The effective fragment potential (EFP) method is described, as well as various quantum mechanical methods. An ab inito quantum mechanical study of 13-atom aluminum clusters is described. EFP studies of aromatic dimers are reported in which dispersion energy makes a significant contribution to the attraction between monomers. Theory and code development toward a means of computing dispersion energy in mixed ab inito-EFP systems are described
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom