z-logo
open-access-imgOpen Access
Modes of Action and Functions of ERECTA-family Receptor-like Kinases in Plant Organ Growth and Development
Author(s) -
Keiko U. Torii
Publication year - 2012
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/1041198
Subject(s) - arabidopsis thaliana , arabidopsis , organogenesis , biology , morphogenesis , kinase , microbiology and biotechnology , computational biology , botany , gene , genetics , mutant
Higher plants constitute the central resource for renewable lignocellulose biomass that can supplement for the world's depleting stores of fossil fuels. As such, understanding the molecular and genetic mechanisms of plant organ growth will provide key knowledge and genetic resources that enables manipulation of plant biomass feedstock for better growth and productivity. The goal of this proposal is to understand how cell proliferation and growth are coordinated during aboveground organ morphogenesis, and how cell-cell signaling mediated by a family of receptor kinases coordinates plant organogenesis. The well-established model plant Arabidopsis thaliana is used for our research to facilitate rapid progress. Specifically, we focus on how ERECTA-family leucine-rich repeat receptor kinases (LRR-RLKs) interact in a synergistic manner to promote organogenesis and pattern formation in Arabidopsis. This project was highly successful, resulted in fourteen publications including nine peer-reviewed original research articles. One provisional US patent has been filed through this DOE funding. We have addressed the critical roles for a family of receptor kinases in coordinating proliferation and differentiation of plants, and we successfully elucidated the downstream targets of this signaling pathway in specifying stomatal patterning

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom