Eddy sensors for small diameter stainless steel tubes.
Author(s) -
Jack L. Skinner,
Alfredo Morales,
Jon E. Grant,
Henry Korellis,
Marianne Elizabeth LaFord,
Benjamin Van Blarigan,
Lisa Andersen
Publication year - 2011
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/1030394
Subject(s) - eddy current , bobbin , electromagnetic coil , materials science , tube (container) , eddy current sensor , eddy current testing , acoustics , mechanical engineering , composite material , electrical engineering , engineering , physics
The goal of this project was to develop non-destructive, minimally disruptive eddy sensors to inspect small diameter stainless steel metal tubes. Modifications to Sandia's Emphasis/EIGER code allowed for the modeling of eddy current bobbin sensors near or around 1/8-inch outer diameter stainless steel tubing. Modeling results indicated that an eddy sensor based on a single axial coil could effectively detect changes in the inner diameter of a stainless steel tubing. Based on the modeling results, sensor coils capable of detecting small changes in the inner diameter of a stainless steel tube were designed, built and tested. The observed sensor response agreed with the results of the modeling and with eddy sensor theory. A separate limited distribution SAND report is being issued demonstrating the application of this sensor
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom