z-logo
open-access-imgOpen Access
Modeling and experimental results for condensing supercritical CO2 power cycles.
Author(s) -
Steven A. Wright,
Thomas Conboy,
Ross Radel,
Gary E Rochau
Publication year - 2011
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/1030354
Subject(s) - supercritical fluid , nuclear engineering , process engineering , gas compressor , electrical efficiency , power (physics) , supercritical carbon dioxide , environmental science , materials science , thermodynamics , mechanical engineering , engineering , physics
This Sandia supported research project evaluated the potential improvement that 'condensing' supercritical carbon dioxide (S-CO{sub 2}) power cycles can have on the efficiency of Light Water Reactors (LWR). The analytical portion of research project identified that a S-CO{sub 2} 'condensing' re-compression power cycle with multiple stages of reheat can increase LWR power conversion efficiency from 33-34% to 37-39%. The experimental portion of the project used Sandia's S-CO{sub 2} research loop to show that the as designed radial compressor could 'pump' liquid CO{sub 2} and that the gas-cooler's could 'condense' CO{sub 2} even though both of these S-CO{sub 2} components were designed to operate on vapor phase S-CO{sub 2} near the critical point. There is potentially very high value to this research as it opens the possibility of increasing LWR power cycle efficiency, above the 33-34% range, while lowering the capital cost of the power plant because of the small size of the S-CO{sub 2} power system. In addition it provides a way to incrementally build advanced LWRs that are optimally designed to couple to S-CO{sub 2} power conversion systems to increase the power cycle efficiency to near 40%

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom