z-logo
open-access-imgOpen Access
Utility-scale grid-tied PV inverter reliability workshop summary report.
Author(s) -
Jennifer E Granata,
Michael A. Quintana,
Coryne Tasca,
Stanley Atcitty
Publication year - 2011
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/1029793
Subject(s) - reliability (semiconductor) , photovoltaic system , reliability engineering , inverter , grid , scale (ratio) , computer science , field (mathematics) , electrical engineering , engineering , power (physics) , systems engineering , voltage , geography , physics , cartography , mathematics , geodesy , quantum mechanics , pure mathematics
A key to the long-term success of the photovoltaic (PV) industry is confidence in the reliability of PV systems. Inverters are the most commonly noted cause of PV system incidents triggered in the field. While not all of these incidents are reliability-related or even necessarily failures, they still result in a loss of generated power. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a Utility-Scale Grid-Tied Inverter Reliability Workshop in Albuquerque, New Mexico, January 27-28, 2011. The workshop addressed the reliability of large (100-kilowatt+) grid-tied inverters and the implications when such inverters fail, evaluated inverter codes and standards, and provided discussion about opportunities to enhance inverter reliability. This report summarizes discussions and presentations from the workshop and identifies opportunities for future efforts

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom