
Research on silicon-carbon alloys and interfaces. Final subcontract report, 15 February 1991--31 July 1994
Author(s) -
John R. Abelson
Publication year - 1995
Language(s) - English
Resource type - Reports
DOI - 10.2172/102293
Subject(s) - analytical chemistry (journal) , silicon , band gap , materials science , photoconductivity , amorphous silicon , x ray photoelectron spectroscopy , substrate (aquarium) , amorphous solid , sputtering , ellipsometry , thin film , crystallography , chemistry , crystalline silicon , nanotechnology , optoelectronics , nuclear magnetic resonance , physics , oceanography , chromatography , geology
This report describes work performed to develop improved p-type wide-band-gap hydrogenated amorphous silicon-carbon alloy (a-Si{sub 1-x}C{sub x:}H) thin films and interfaces for the ``top junction`` in hydrogenated amorphous silicon (a-Si:H)-based p-i-n solar cells. We used direct current reactive magnetron sputtering to deposit undoped a-Si{sub 1-x}C{sub x}H films with a Tauc band gap E{sub g} of 1.90 eV, a sub-band-gap absorption of 0.4 (at 1.2 eV), an Urbach energy of 55 MeV, an ambipolar diffusion length of 100 nm, an air-mass-one photoconductivity of 10{sup {minus}6}/{Omega}-cm, and a dark conductivity of 8{times} 1O{sup {minus}11}/{Omega}-cm. p{sup +}a-Si{sub 1-x}C{sub x}:H films with a Tauc band gap of 1.85 eV have a dark conductivity of 8 {times} 10{sup {minus}6}/{Omega}-cm and thermal activation energy of 0.28 eV. We used in-situ spectroscopic ellipsometry and post-growth X-ray photoelectron spectroscopy to determine the relative roles of H and Si in the chemical reduction of SnO{sub 2} in the early stages of film growth. We used in-situ spectroscopic ellipsometry to show that a-Si:H can be transformed into {mu}c-Si:H in a subsurface region under appropriate growth conditions. We also determined substrate cleaning and ion bombardment conditions which improve the adhesion of a-Si{sub 1-x}C{sub x}:H films