z-logo
open-access-imgOpen Access
The formation of Al{sub 2}O{sub 3}/V{sub 2}O{sub 3} multilayer structures by high-dose ion implantation
Author(s) -
L. Gea,
L. A. Boatner,
J. D. Budai,
J. Rankin
Publication year - 1995
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/102253
Subject(s) - vanadium , materials science , crystallography , x ray crystallography , ion , epitaxy , analytical chemistry (journal) , diffraction , annealing (glass) , ion implantation , layer (electronics) , chemistry , nanotechnology , optics , physics , organic chemistry , chromatography , metallurgy , composite material
High-resolution TEM, RBS-channeling and x-ray-diffraction techniques have been used to characterize multilayered structures formed by the high-dose co-implantation of vanadium and oxygen into single crystals of {alpha}-Al{sub 2}O{sub 3}. Thin, two-dimensional multilayered structures have been formed by implanting c-axis and a-axis-oriented single crystals of Al{sub 2}O{sub 3} at room temperature with vanadium (10{sup 17} ions/cm{sup 2} at 300 keV) and oxygen (2 x 10{sup 17} ions/cm{sup 2}, 120 keV) followed by a rapid anneal at 1,000 C. Cross-sectional TEM studies showed that this process produced a buried layer of V{sub 2}O{sub 3} located about 120 nm below the Al{sub 2}O{sub 3} surface. X-ray-diffraction investigations revealed that this layer is epitaxially oriented in three dimensions with respect to the host Al{sub 2}O{sub 3} lattice. The orientational relationship was subsequently confirmed by RBS/channeling techniques. V{sub 2}O{sub 3} exhibits a first-order phase transition at about 155 K that is accompanied by striking changes in its electrical and optical properties, and this phase transition was observed through in-situ TEM cooling studies of cross-sectional samples

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom