z-logo
open-access-imgOpen Access
The Simplicity of Perfect Atoms: Degeneracies in Supersymmetric Hydrogen
Author(s) -
Tomas Rube,
Jay G. Wacker
Publication year - 2011
Language(s) - English
Resource type - Reports
DOI - 10.2172/1022504
Subject(s) - physics , bound state , supersymmetry , particle physics , degeneracy (biology) , order (exchange) , theoretical physics , meson , annihilation , quantum mechanics , bioinformatics , finance , economics , biology
Supersymmetric QED hydrogen-like bound states are remarkably similar to non-supersymmetric hydrogen, including an accidental degeneracy of the fine structure and which is broken by the Lamb shift. This article classifies the states, calculates the leading order spectrum, and illustrates the results in several limits. The relation to other non-relativistic bound states is explored. Supersymmetric bound states provide a laboratory for studying dynamics in supersymmetric theories. Bound states like hydrogen provide a framework for understanding the qualitative dynamics of QCD mesons, a supersymmetric version of QED can provide a qualitative picture for the symmetries and states of superQCD mesons. Furthermore, recent interest in dark matter as a composite state, leads to asking how supersymmetry acts upon these composite states [4-7]. This article calculates the leading order corrections to a hydrogen-like atoms in an exactly supersymmetric version of QED. Much of the degeneracy is broken by the fine structure and a seminal calculation was performed in [1] for positronium, see [2] for an N = 2 version of positronium. Supersymmetric hydrogen is a similar except for the absence of annihilation diagrams, see [3] for an independent calculation. In the heavy proton mass limit, the supersymmetric interactions of the theory become irrelevant operators, suppressed by powers of the proton mass like the magnetic moment operator in QED and the fine structure is identical to the non-supersymmetric theory. This article finds that fine structure spectrum of supersymmetric spectrum of hydrogen has an accidental degeneracy which is exactly analogous to the accidental degeneracy of the l = 0 and l = 1 levels of the n = 2; j = 1/2 state of hydrogen. The supersymmetric version of the Lamb shift lifts the residual degeneracy and this article computes the logarithmically enhanced breaking

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom