z-logo
open-access-imgOpen Access
Continuum and micromechanics treatment of constraint in fracture
Author(s) -
R.H. Dodds,
C.F. Shih,
TL Anderson
Publication year - 1993
Publication title -
international journal of fracture
Language(s) - English
Resource type - Reports
DOI - 10.2172/10175312
Subject(s) - micromechanics , fracture toughness , materials science , toughness , fracture mechanics , composite material , crack tip opening displacement , fracture (geology) , mechanics , structural engineering , stress intensity factor , physics , engineering , composite number
Two complementary methodologies are described to quantify the effects of crack-tip stress triaxiality (constraint) on the macroscopic measures of elastic-plastic fracture toughness J and Crack-Tip Opening Displacement (CTOD). In the continuum mechanics methodology, two parameters J and Q suffice to characterize the full range of near-tip environments at the onset of fracture. J sets the size scale of the zone of high stresses and large deformations while Q scales the near-tip stress level relative to a high triaxiality reference stress state. The material's fracture resistance is characterized by a toughness locus Jc(Q) which defines the sequence of J-Q values at fracture determined by experiment from high constraint conditions (Q∼0) to low constraint conditions (Q<0). A micromechanics methodology is described which predicts the toughness locus using crack-tip stress fields and critical J-values from a few fracture toughness tests. A robust micromechanics model for cleavage fracture has evolved from the observations of a strong, spatial self-similarity of crack-tip principal stresses under increased loading and across different fracture specimens. We explore the fundamental concepts of the J-Q description of crack-tip fields, the fracture toughness locus and micromechanics approaches to predict the variability of macroscopic fracture toughness with constraint under elastic-plastic conditions. Computational results are presented for a surface cracked plate containing a 6:1 semielliptical, a=t/4 flaw subjected to remote uniaxial and biaxial tension. Crack-tip stress fields consistent with the J-Q theory are demonstrated to exist at each location along the crack front. The micromechanics model employs the J-Q description of crack-front stresses to interpret fracture toughness values measured on laboratory specimens for fracture assessment of the surface cracked plate.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom