z-logo
open-access-imgOpen Access
Comparison of Ambient Radon Concentrations in Air in the Northern Mojave Desert from Continuous and Integrating Instruments
Author(s) -
David S. Shafer,
David McGraw,
L. Karr,
Greg McCurdy,
Tammy Kluesner,
Karen J. Gray,
Jeffrey J. Tappen
Publication year - 2010
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/1009522
Subject(s) - radon , environmental science , relative humidity , continuous monitoring , air monitoring , meteorology , humidity , radiation monitoring , atmospheric sciences , instrumentation (computer programming) , weather station , remote sensing , hydrology (agriculture) , geology , geography , environmental engineering , nuclear medicine , physics , medicine , operations management , geotechnical engineering , quantum mechanics , computer science , economics , operating system
As part of a program to characterize and baseline environmental parameters, ambient radon-222 (Rn) monitoring was conducted in the rural community of Amargosa Valley, NV, the closest community to Yucca Mountain. Passive integrating and continuous Rn monitoring instruments were deployed adjacent to the Community Environmental Monitoring Program (CEMP) station in Amargosa Valley. The CEMP station provided real-time ambient gamma exposure and meteorological data used to correct the integrated Rn measurements, verified the meteorological data collected by the continuous Rn monitoring instrument, and for provided instrumentation for evaluating the relationships between meteorological conditions and Rn concentrations. Hourly Rn concentrations in air measured by the continuous Rn monitoring instrument (AlphaGUARD®) were compared to the average hourly values for the integrating Rn measurements (E-PERM®) by dividing the total Rn measurements by the number of hours the instruments were deployed. The results of the comparison indicated that average hourly ambient Rn concentrations as measured by both methods ranged from 0.2 to 0.4 pico-curies per liter of air. Ambient Rn values for the AlphaGUARD exhibited diurnal variations. When Rn concentrations were compared with measurements of temperature (T), barometric pressure, and relative humidity, the correlation (inversely) was highest with T, albeit weakly

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom