z-logo
open-access-imgOpen Access
Electroweak Precision Measurements and Collider Probes of the Standard Model with Large Extra Dimensions
Author(s) -
Thomas G. Rizzo
Publication year - 1999
Language(s) - English
Resource type - Reports
DOI - 10.2172/10055
Subject(s) - physics , particle physics , higgs boson , electroweak interaction , tevatron , large hadron collider , technicolor , standard model (mathematical formulation) , collider , nuclear physics , physics beyond the standard model , kaluza–klein theory , boson , gauge boson , theoretical physics , archaeology , gauge (firearms) , gauge theory , history
The elementary particles of the Standard Model may live in more than 3+1 dimensions. We study the consequences of large compactified dimensions on scattering and decay observables at high-energy colliders. Our analysis includes global fits to electroweak precision data, indirect tests at high-energy electron-positron colliders (LEP2 and NLC), and direct probes of the Kaluza-Klein resonances at hadron colliders (Tevatron and LHC). The present limits depend sensitively on the Higgs sector, both the mass of the Higgs boson and how many dimensions it feels. If the Higgs boson is trapped on a 3+1 dimensional wall with the fermions, large Higgs masses (up to 500 GeV) and relatively light Kaluza-Klein mass scales (less than 4 TeV) can provide a good fit to precision data. That is, a light Higgs boson is not necessary to fit the electroweak precision data, as it is in the Standard Model. If the Higgs boson propagates in higher dimensions, precision data prefer a light Higgs boson (less than 260 GeV), and a higher compactification scale (greater than 3.8 TeV). Future colliders can probe much larger scales. For example, a 1.5 TeV electron-positron linear collider can indirectly discover Kaluza-Klein excitations up to 31 TeV if 500 fb{sup {minus}1} integrated luminosity is obtained

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here