Calculation of a residual mean meridional circulation for a zonal-mean tracer transport model: Revision 1
Author(s) -
Wookap Choi,
D. Rotman,
Donald J. Wuebbles
Publication year - 1995
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/100418
Subject(s) - eddy , residual , radiative transfer , tracer , zonal and meridional , lagrangian , circulation (fluid dynamics) , eulerian path , chemical transport model , mechanics , atmospheric circulation , meteorology , environmental science , atmospheric sciences , physics , mathematics , turbulence , troposphere , algorithm , optics , nuclear physics
Because of their computational advantages, zonally-averaged chemical-radiative-transport models are widely used to investigate the distribution of chemical species and their change due to the anthropogenic chemicals in the lower and middle atmosphere. In general, the Lagrangian-mean formulation would be ideal to treat transport due to the zonal mean circulation and eddies. However, the Lagrangian formulation is difficult to use in practical applications. The most widely-used formulation for treating global atmospheric dynamics in two-dimensional models is the transformed Eulerian mean (TEM) equations. The residual mean meridional circulation (RMMC) in the TEM system is used to advect tracers. In this study, we describe possible solution techniques for obtaining the RMMC in the LLNL two-dimensional chemical-radiative-transport model. In the next section, the formulation will be described. In sections 3 and 4, possible solution procedures will be described for a diagnostic and prognostic case, respectively
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom