Development and Pilot Manufacture of Pseudo-Electric Double Layer Capacitors
Author(s) -
Dae Young Jung
Publication year - 2011
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/1003872
Subject(s) - capacitor , battery (electricity) , electrical engineering , automotive engineering , range (aeronautics) , engineering , layer (electronics) , environmental science , power (physics) , materials science , process engineering , waste management , voltage , nanotechnology , composite material , physics , quantum mechanics
Binghamton University carried out basic studies on thermal characteristics of the current ELDC design and characterization of current active and conductive carbon materials used to fabricate ELDC and p-ELDC. Multi physics approach was take for thermal modeling to understand the temperature distribution of an individual cell as well as multi-cell systems, which is an important factor to the reliability of ELDC?s and p-ELDC?s. Structure and properties were characterized for various raw active carbon materials which can be used as electrode to look into potential cost reduction opportunity without degrading the performance. BU team also performed experiments for compositional optimization studies for active carbon, conductive carbon, and binder formulation. A few laboratory instruments were installed for this project at BU. These instruments will continued to be used to carry out further research and development tasks relevant to ELDC and p-ELDC. Project subawardee, Ioxus, Inc., successfully created, enhanced, and then generated a product line of hybrid capacitors which now range in size from 220 Farads (F) to 1000F. These products have been proven to work as the primary energy storage method for LED lighting applications, and two significant commercial applications are evaluating these devices for use. Both of these applications will be used in LED lighting, which replaces traditional batteries and allows for a very fast charge and a high cycle life, over a wide temperature range. This will lead to a significant reduction of waste that ends up in landfills. These products are 70% recyclable, with a 10 year life. In one both applications, it is expected that the hybrid capacitor will power the LED lights for the life of the product, which would have required at least 10 battery changes
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom