z-logo
open-access-imgOpen Access
Wakefield Calculations for Radiation Stopper 1 (RST1)
Author(s) -
C. Limborg-Deprey
Publication year - 2010
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/1000393
Subject(s) - diffraction , thermal emittance , physics , radiation , optics , injector , beam (structure) , wake , computational physics , mechanics , thermodynamics
The main result of this note is that no wakefield mitigation is required for the Radiation Stopper (RST1) in the LCLS injector. The RST1 geometry is not symmetric in the vertical direction, and we derive a slight modification to the diffraction model wake for a cylindrically symmetric (2D) cavity that can be used for this problem. Performing a full 3D MAFIA calculation for the nominal 1 mm (rms) long bunch, we show that the modified diffraction model well describes the wakefields generated in RST1. The results imply an on-axis emittance growth of 0.0075%, well below the 0.5% tolerance threshold. To reach the 0.5% threshold the beam would need to be mis-steered by a large amount - 7 mm - from the axis. One reason that the effect is small is that the beta functions at the RST1 are small

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom