z-logo
open-access-imgOpen Access
Estimation of particulate nutrient load usingturbidity meter
Author(s) -
Kōichi Yamamoto,
Tadashi Suetsugi
Publication year - 2006
Publication title -
water science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.406
H-Index - 137
eISSN - 1996-9732
pISSN - 0273-1223
DOI - 10.2166/wst.2006.065
Subject(s) - turbidity , nutrient , surface runoff , environmental science , particulates , hysteresis , phosphorus , soil science , hydrology (agriculture) , linear regression , mathematics , ecology , geotechnical engineering , chemistry , statistics , geology , biology , physics , organic chemistry , quantum mechanics
The "Nutrient Load Hysteresis Coefficient" was proposed to evaluate the hysteresis of the nutrient loads to flow rate quantitatively. This could classify the runoff patterns of nutrient load into 15 patterns. Linear relationships between the turbidity and the concentrations of particulate nutrients were observed. It was clarified that the linearity was caused by the influence of the particle size on turbidity output and accumulation of nutrients on smaller particles (diameter < 23 microm). The L-Q-Turb method, which is a new method for the estimation of runoff loads of nutrients using a regression curve between the turbidity and the concentrations of particulate nutrients, was developed. This method could raise the precision of the estimation of nutrient loads even if they had strong hysteresis to flow rate. For example, as for the runoff load of total phosphorus load on flood events in a total of eight cases, the averaged error of estimation of total phosphorus load by the L-Q-Turb method was 11%, whereas the averaged estimation error by the regression curve between flow rate and nutrient load was 28%.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom