z-logo
open-access-imgOpen Access
An integrated fuzzy optimization and simulation method for optimal quality-quantity operation of a reservoir-river system
Author(s) -
Omid Babamiri,
Arash Azari,
Safar Marofi
Publication year - 2022
Publication title -
water science and technology water supply
Language(s) - English
Resource type - Journals
eISSN - 1607-0798
pISSN - 1606-9749
DOI - 10.2166/ws.2022.045
Subject(s) - inflow , water quality , environmental science , water supply , fuzzy logic , computer science , reliability (semiconductor) , quality (philosophy) , mathematical optimization , hydrology (agriculture) , environmental engineering , geology , mathematics , ecology , power (physics) , oceanography , physics , geotechnical engineering , quantum mechanics , artificial intelligence , biology , philosophy , epistemology
In this study, a novel optimization-simulation dynamic approach was developed for optimal water operation of reservoir-river systems to improve the water quality and supply the water demands along a river. To this purpose, the WEAP-QUAL2 K linked model was developed to simulate water quality and quantity, which is dynamically coupled to a fuzzy multi-objective imperialist competition algorithm (FMOICA). The approach's applicability is demonstrated through the case study of the Dez reservoir river in Iran. The simulation and optimization period used was six years (October 2019-September 2025). Stochastic models (SARIMA(1,0,1)(1,1,1)) were used to forecast inflow into the Dez dam reservoir for the simulation period. Given that in the verification stage of the QUAL2 K and WEAP model it was concluded that the model has high accuracy in simulating the parameters of water quality and quantity, two scenarios were considered: the first scenario was used for dynamic coupling of the quantity-quality model (reference scenario), and the second was the fuzzy optimization of a linked model (optimal scenario). The results show that average water supply reliability increased from 86.13% in the reference scenario to 95.76% in the optimal scenario. Also, under the optimal scenario, the river water quality improves. It was also found that environmental flow rate demands of the river are fully supplied in different months.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom