z-logo
open-access-imgOpen Access
Effect of water compounds on photo-disinfection efficacy of TiO2 NP-embedded cellulose acetate film in natural water
Author(s) -
Jing Xie,
YenCon Hung
Publication year - 2020
Publication title -
water science and technology water supply
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.318
H-Index - 39
eISSN - 1607-0798
pISSN - 1606-9749
DOI - 10.2166/ws.2020.271
Subject(s) - turbidity , humic acid , chemistry , water treatment , cellulose , citric acid , portable water purification , water disinfection , nuclear chemistry , calcium carbonate , environmental chemistry , environmental engineering , food science , organic chemistry , environmental science , biology , ecology , fertilizer
Photocatalysis disinfection has great potential for irrigation water disinfection to improve fresh produce safety. Titanium dioxide (TiO2) nanoparticle (NP)-embedded cellulose acetate (CA) film has shown effectiveness against Escherichia coli (E. coli) O157:H7 in water. The current study evaluated the effect of natural water compounds on the photo-disinfection efficacy of TiO2 NP-embedded CA film. Humic acid, calcium carbonate (CaCO3), and kaolin clay solutions were prepared at four concentrations, respectively. When concentration increased from 0 to 20 ml/L, inactivation of E. coli O157:H7 in humic acid, CaCO3, and kaolin clay solutions decreased from 6 log to 5, 4, and 2 log CFU/ ml, respectively after 3 h treatment. Turbidity, UVT-254, water hardness, total suspended solids (TSS), and total organic carbon (TOC) of the solutions were measured. UVT-254 and turbidity had the highest correlation with the inhibition effect of water compounds on photo-disinfection efficacy. A prediction equation was developed with UVT-254 and water hardness as independent variables to predict photo-disinfection efficacy in natural water. E. coli O157:H7 decreased by 1 and 2.5 log CFU/ ml in unfiltered and filtered natural creek water samples after treatment. The results from this study showed promise in the use of TiO2 NP-embedded CA film to inactivate pathogens in natural water.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom