z-logo
open-access-imgOpen Access
A surrogate-based simulation–optimization approach for coastal aquifer management
Author(s) -
Han Zheng,
Wenxi Lu,
Yue Fan,
Jin Lin,
Yuan Qian
Publication year - 2020
Publication title -
water science and technology water supply
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.318
H-Index - 39
eISSN - 1607-0798
pISSN - 1606-9749
DOI - 10.2166/ws.2020.259
Subject(s) - surrogate model , kriging , computer science , variable (mathematics) , mathematical optimization , process (computing) , groundwater , engineering , mathematics , machine learning , geotechnical engineering , mathematical analysis , operating system
This study proposed a pumping-injection (P-I) groundwater management strategy based on a simulation–optimization (S-O) framework to mitigate seawater intrusion (SI). The methodology was applied to a real case in Longkou, China. A three-dimensional variable-density groundwater simulation model was established to simulate and predict the SI process. In the S-O framework, while solving the optimization model, it is required to call the simulation model thousands of times, which leads to enormous computational load. In this case, the Kriging and support vector regression (SVR) surrogate models were established for the simulation model respectively. Furthermore, the ensemble surrogate modeling technique was applied to construct the Kriging-SVR ensemble surrogate model. The most accurate surrogate model was selected as the substitute for the simulation model, saving considerable computing costs. The results show that the ensemble surrogate model performs better than the stand-alone surrogate models in accuracy, indicating that combining stand-alone surrogate models is a potential modeling method for the surrogate model of the variable-density groundwater simulation model. By solving the optimization model, the optimal pumping and injection schemes under different scenarios were obtained. The optimization results demonstrate that the proposed methodology is effective and stable in coastal groundwater management.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom