Conception and evaluation methodology of water resources carrying capacity based on three-level analysis
Author(s) -
Pengfei Lin,
Jinjun You,
Lin Wang,
Ling Jia,
Hong Gan,
Yicheng Fu
Publication year - 2020
Publication title -
water science and technology water supply
Language(s) - English
Resource type - Journals
eISSN - 1607-0798
pISSN - 1606-9749
DOI - 10.2166/ws.2020.149
Subject(s) - carrying capacity , water resources , sustainable development , arid , constraint (computer aided design) , environmental science , water resource management , environmental resource management , principal (computer security) , water supply , ecosystem , computer science , environmental economics , environmental engineering , engineering , ecology , mechanical engineering , economics , biology , operating system
In supply-oriented water development, water is a rigid constraint on sustainable development in many parts of the world, especially in arid and semi-arid areas. The water resources carrying capacity (WRCC) concept represents the maximum socio-economic scale that can be supported by water exploitation without causing an irreversible impact on the ecosystem. In this paper, three-level framework is put forward to illustrate and quantitatively evaluate the WRCC. The first level is the principal body, which focuses on the study of water resources systems. The second level is the carried object, including the socio-economic system, water ecological system, and environment system. The third level is the coupling of the principal body and carried object to calculate the WRCC. This three-level WRCC model was applied to the load conditions of the Shiyang River Basin (SRB). The results show that the SRB is overloaded, and only 1.99 million people can be carried at the modern carrying level. The WRCC could be increased by optimizing industrial structures and improving water efficiency. This method provides a tool to help policymakers develop sustainable approaches to environmental management and planning.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom