z-logo
open-access-imgOpen Access
The effect of nitrogen mitigation measures evaluated by monitoring of nitrogen concentrations and loadings in Danish mini-catchments – 1990–2015
Author(s) -
Gitte BlicherMathiesen,
Jørgen Windolf,
Søren E. Larsen,
Jonas Rolighed,
Mette Vodder Carstensen,
Anker Lajer Højberg,
Henrik Tornbjerg,
Brian Kronvang
Publication year - 2020
Publication title -
water science and technology water supply
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.318
H-Index - 39
eISSN - 1607-0798
pISSN - 1606-9749
DOI - 10.2166/ws.2020.002
Subject(s) - streams , environmental science , hydrology (agriculture) , groundwater , tile drainage , nitrogen , agriculture , danish , soil water , geography , soil science , geology , chemistry , archaeology , computer network , linguistics , philosophy , geotechnical engineering , organic chemistry , computer science
Monitoring of agricultural mini-catchments (AMC) has been part of the Danish national monitoring programme (National Monitoring Programme for Water and Nature) since 1989. Thus, nitrogen (N) concentrations and loads have been monitored in soil water, tile drains, and streams within five AMC. Moreover, extensive monitoring of N concentrations and loads in streams draining 46 mini-catchments has been conducted every year since 1989. This has resulted in two national datasets on trends in flow-weighted N concentrations relative to factors such as groundwater age and management history. We analyzed these datasets and found that the intensively monitored micro-catchments generally showed a strong signal with significant downward trends in flow-weighted N concentrations in monitored soil water (−22% to −68%), tile drains (−38% to −59%), and streams (−19% to −53%). The 46 micro-catchments monitored for N in streams also exhibited downward trends in flow-weighted N concentrations, which can mainly be ascribed to the introduction of mandatory national regulation of N in agriculture in Denmark in the mid-1980s. However, classification of the mini-catchments according to the age of the oxidized groundwater revealed significant differences in N trends between the groups of mini-catchments. Thus, the strongest downward trend in flow-weighted N concentrations was as follows: <1 year (−52%), 1–3 years (−44%), and >3 years (−38%).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom