Role of evaporation in NH4-N transformations in soils artificially contaminated with blackwater
Author(s) -
Sudhakar M. Rao,
Nitish Venkateswarlu Mogili,
Lydia Arkenadan
Publication year - 2019
Publication title -
water science and technology water supply
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.318
H-Index - 39
eISSN - 1607-0798
pISSN - 1606-9749
DOI - 10.2166/ws.2019.145
Subject(s) - blackwater , volatilisation , environmental chemistry , nitrate , aquifer , ammonia , soil water , groundwater , ammonium , ammonia volatilization from urea , chemistry , contamination , environmental science , evaporation , environmental engineering , soil science , geology , ecology , physics , geotechnical engineering , organic chemistry , biology , thermodynamics
The study examines the impact of evaporation on the fate of ammonium-N reactions in blackwater-contaminated soils. During evaporation, ammonia (g) volatilization is the preferred route of NH4-N transformation and nitrate formation is initiated thereafter. Ammonia volatilization ceased at residual blackwater contents of 16–40% owing to loss of air-void connectivity. Experimental results indicated that owing to ammonia volatilization and reduced blackwater content only 23–35% of initial NH4-N concentration was transformed to NO3-N. This study also predicted the nitrate accumulation in Mulbagal town aquifer due to blackwater discharge from pit toilets. The prediction indicated that the permissible (45 mg/L) nitrate concentration in the aquifer may have been breached several decades ago, exposing the populace to prolonged drinking water contamination.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom