z-logo
open-access-imgOpen Access
Autonomous intake selection optimisation model for a dual source drinking water treatment plant
Author(s) -
Edoardo Bertone,
Kelvin O’Halloran,
M. E. Bartkow,
Kyle Mann
Publication year - 2017
Publication title -
water science and technology water supply
Language(s) - English
Resource type - Journals
eISSN - 1607-0798
pISSN - 1606-9749
DOI - 10.2166/ws.2017.111
Subject(s) - raw water , environmental science , water quality , electricity , selection (genetic algorithm) , water treatment , dual (grammatical number) , probabilistic logic , environmental engineering , computer science , engineering , ecology , art , literature , artificial intelligence , electrical engineering , biology
The Mudgeeraba drinking water treatment plant, in South-East Queensland, Australia, can withdraw raw water from two different reservoirs: the smaller Little Nerang dam (LND) by gravity, and the larger Advancetown Lake, through the use of pumps. Selecting the optimal intake is based on water quality and operators9 experience; however, there is potential to optimise this process. In this study, a comprehensive hybrid (data-driven, chemical, and mathematical) intake optimisation model was developed, which firstly predicts the chemicals dosages, and then the total (chemicals and pumping) costs based on the water quality at different depths of the two reservoirs, thus identifying the cheapest option. A second data-driven, probabilistic model then forecasts the volume of the smaller LND six weeks ahead in order to minimise the depletion and spill risks. This is important in case the first model identifies this reservoir as the optimal intake solution, but this could lead in the long term to depletion and full reliance on the electricity-dependent Advancetown Lake. Both models were validated and proved to be accurate, and with the potential for substantial monetary savings for the water utility.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom