z-logo
open-access-imgOpen Access
Simulation of NOM events in pilot plant evaluation of DAF/Ozone/BAC for drinking water treatment
Author(s) -
Ying Yan,
M. Carter,
A. D. Mercer
Publication year - 2017
Publication title -
water science and technology water supply
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.318
H-Index - 39
eISSN - 1607-0798
pISSN - 1606-9749
DOI - 10.2166/ws.2017.086
Subject(s) - raw water , environmental science , water treatment , stock solution , turbidity , ozone , pilot plant , fractionation , pulp and paper industry , water quality , raw material , portable water purification , brewing , chemistry , waste management , environmental engineering , chromatography , biology , engineering , ecology , organic chemistry , food science , fermentation
Pilot plant testing is invaluable for ascertaining the robustness of water treatment processes against raw water quality events such as turbidity and colour spikes, whether it be for stress testing of an existing process or designing of a new process. Unfortunately, the natural occurrence of such events (particularly colour) can be difficult to predict and commercial humic materials generally fail to closely match the indigenous natural organic matter (NOM) present in the raw water. Therefore, it is highly desirable to be able to simulate NOM event conditions. This paper describes a simple brewing method that we developed and used in our recent pilot plant evaluation of a proposed DAF/Ozone/BAC process for drinking water treatment. Using this method we successfully prepared, by using fallen leaves etc. collected from the local catchment area, large quantities of a concentrated NOM stock solution with its specific ultraviolet absorbance (SUVA), when diluted, very close to the median SUVA of historical NOM events. The brewed solution showed broadly similar NOM characteristics to those of the raw water encountered during the pilot investigation period in terms of molecular weight distribution and fractionation. The coagulation behaviour was also examined for the spiked and non-spiked raw water.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom