Application of cryptocrystalline magnesite-bentonite clay hybrid for defluoridation of underground water resources: implication for point of use treatment
Author(s) -
Vhahangwele Masindi
Publication year - 2016
Publication title -
journal of water reuse and desalination
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.548
H-Index - 16
eISSN - 2408-9370
pISSN - 2220-1319
DOI - 10.2166/wrd.2016.055
Subject(s) - adsorption , fluoride , bentonite , magnesite , environmental pollution , langmuir , chemistry , chemical engineering , materials science , waste management , nuclear chemistry , environmental engineering , environmental science , inorganic chemistry , organic chemistry , engineering , environmental protection , magnesium
A new synthesis method was established to fabricate a nanocomposite material comprising of cryptocrystalline magnesite and bentonite clay that has high adsorption capacity for ionic pollutants. To synthesize the composite at 1:1 weight (g): weight (g) ratio, a vibratory ball mill was used. Batch adsorption experiments were carried out to determine optimum conditions for fluoride adsorption. Parameters optimized included: time, dosage, concentration and pH. Optimum conditions for defluoridation were found to be 30 min of agitation, 0.5 g of dosage, 0.5:100 solid to liquid (S/L) ratios and 25 mg L−1 of initial fluoride ions. Fluoride removal was independent of pH. The adsorption kinetics and isotherms were well fitted by pseudo-second-order and Langmuir models, respectively indicating chemical and monolayer adsorption. Findings illustrated that the newly synthesized adsorbent was a promising adsorbent for the environmental pollution clean-up of excess fluoride in underground water and it can be used as a point source treatment technology in rural areas of South Africa and other developing countries.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom