Energy evaluation and treatment efficiency of vacuum membrane distillation for brackish water desalination
Author(s) -
Mohammad Ramezanianpour,
Muttucumaru Sivakumar
Publication year - 2014
Publication title -
journal of water reuse and desalination
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.548
H-Index - 16
eISSN - 2408-9370
pISSN - 2220-1319
DOI - 10.2166/wrd.2014.025
Subject(s) - membrane distillation , brackish water , desalination , fouling , environmental engineering , environmental science , produced water , reuse , water treatment , wastewater , distillation , reverse osmosis , waste management , membrane technology , membrane , chemistry , engineering , chromatography , ecology , biochemistry , salinity , biology
Strict environmental regulations have led to the rapid development of membrane separation technologies for the production of potable water, for industrial water supply, and for the reuse and discharge of treated wastewater. Promotion of water recycling and the provision of potable water from brackish water prevent significant negative effects on the environment and drinking water supplies. This study is intended to describe and compare a sustainable technology for brackish water treatment. Among the four configurations of the membrane distillation process, vacuum membrane distillation (VMD) produces higher flux and results in a low fouling rate. It comprises evaporation and condensation that mimics what occurs in nature. Mathematical models proposed for the VMD transport mechanisms are incorporated to predict the actual experimental flux. The response of the flux rate to various process operating parameters is demonstrated. Variation of effective parameters is investigated in terms of energy consumption. The data indicate that the permeate flux is highly responsive to the variation of pressure and temperature. VMD enables the removal of 99.9% of total dissolved solids from natural and contaminated water sources. The findings are that the quality of the permeate water from all sources was at acceptable standards for potable use.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom