z-logo
open-access-imgOpen Access
Will China's water resources be safe in 2030?
Author(s) -
Lishuo Guo,
Lifang Wang
Publication year - 2021
Publication title -
water policy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.488
H-Index - 56
eISSN - 1996-9759
pISSN - 1366-7017
DOI - 10.2166/wp.2021.136
Subject(s) - water resources , carrying capacity , population , resource (disambiguation) , china , water resource management , integrated water resources management , pace , water use , natural resource economics , water conservation , business , environmental science , environmental economics , economics , geography , computer science , ecology , computer network , demography , archaeology , geodesy , sociology , biology
This paper is distinct from existing studies on water resources carrying capacity which usually use dimensionless data to represent trend and status of water resources carrying capacity. Here, on the grounds of the most stringent water resource management system and following the principles of water determining population, water determining city scale, water determining production and so on, water resources carrying capacity prediction model was established. The water resources carrying capacity was represented by population, which can directly reflect the status of water resources. Under the rigid constraints of water use quantity and water use efficiency, six scenarios were set to predict China's maximum population in 2030. The results demonstrated that the maximum population in each scenario is close to 1.45 billion of National Population Development Plan. It means water resources rigid constraints can support population and economic growth at the socio-economic development current pace and path. Total water use quantity will not break through the limit of 800–900 billion m3 when achieving the expected goals of social and economic development, not even more than 700 billion m3. Meanwhile, in order to relieve water resources stress, to improve water resources carrying capacity, and to accelerate construction of a water-saving society, some suggestions were put forward.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom