z-logo
open-access-imgOpen Access
River water analysis using a multiparametric approach: Portuguese river as a case study
Author(s) -
Ana Barbosa-Vasconcelos,
Ângelo Mendes,
Flávia Martins,
Elisabete Lopes,
Ana Machado,
Adriano A. Bordalo,
Paulo VazPires,
Natividade Vieira,
Paulo Martins da Costa,
Lucinda J. Bessa
Publication year - 2018
Publication title -
journal of water and health
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.482
H-Index - 59
eISSN - 1996-7829
pISSN - 1477-8920
DOI - 10.2166/wh.2018.047
Subject(s) - water quality , temperature gradient gel electrophoresis , contamination , veterinary medicine , biology , enterococcus , polymerase chain reaction , fecal coliform , environmental science , microbiology and biotechnology , ecology , bacteria , medicine , biochemistry , genetics , 16s ribosomal rna , gene , antibiotics
The Ave River in northern Portugal has a history of riverbanks and water quality degradation. The river water quality was assessed by physicochemical, biological (macroinvertebrates) and microbiological (Enterococcus spp. and Escherichia coli) parameters in six locations (A-F, point A being the nearest to the source) throughout its course during a year. Epilithic biofilms were studied through polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). Antimicrobial susceptibility testing helped with selecting isolates (n = 149 E. coli and n = 86 enterococci) for further genetic characterization. Pursuant to physicochemical and macroinvertebrates-based parameters, the river water was of reasonable quality according to European legislation (Directive 2000/60/EC). However, the microbiological analysis showed increased fecal contamination downstream from point C. At point D, four carbapenem-resistant E. coli isolates were recovered. Paradoxically, point D was classified as a point of 'Good Water Quality' according to macroinvertebrates results. Point F presented the highest contamination level and incidence of multidrug-resistant (MDR) isolates in the water column (13 MDR enterococci out of 39 and 33 MDR E. coli out of 97). Epilithic biofilms showed higher diversity in pristine points (A and B). Thus, biological and microbiological parameters used to assess the water quality led to divergent results; an outcome that reinforces the need for a holistic evaluation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom