z-logo
open-access-imgOpen Access
Using probabilities of enterococci exceedance and logistic regression to evaluate long term weekly beach monitoring data
Author(s) -
Diana Aranda,
Jose V. Lopez,
Helena M. SoloGabriele,
Jay M. Fleisher
Publication year - 2015
Publication title -
journal of water and health
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.482
H-Index - 59
eISSN - 1996-7829
pISSN - 1477-8920
DOI - 10.2166/wh.2015.030
Subject(s) - logistic regression , environmental science , statistics , sampling (signal processing) , regression analysis , water quality , sample (material) , linear regression , hydrology (agriculture) , mathematics , ecology , geology , computer science , biology , chemistry , geotechnical engineering , filter (signal processing) , chromatography , computer vision
Recreational water quality surveillance involves comparing bacterial levels to set threshold values to determine beach closure. Bacterial levels can be predicted through models which are traditionally based upon multiple linear regression. The objective of this study was to evaluate exceedance probabilities, as opposed to bacterial levels, as an alternate method to express beach risk. Data were incorporated into a logistic regression for the purpose of identifying environmental parameters most closely correlated with exceedance probabilities. The analysis was based on 7,422 historical sample data points from the years 2000-2010 for 15 South Florida beach sample sites. Probability analyses showed which beaches in the dataset were most susceptible to exceedances. No yearly trends were observed nor were any relationships apparent with monthly rainfall or hurricanes. Results from logistic regression analyses found that among the environmental parameters evaluated, tide was most closely associated with exceedances, with exceedances 2.475 times more likely to occur at high tide compared to low tide. The logistic regression methodology proved useful for predicting future exceedances at a beach location in terms of probability and modeling water quality environmental parameters with dependence on a binary response. This methodology can be used by beach managers for allocating resources when sampling more than one beach.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom