Comparison of indicator bacteria inactivation by the ultraviolet and the ultraviolet/hydrogen peroxide disinfection processes in humic waters
Author(s) -
Arzu Teksoy,
Ufuk Alkan,
Sevil Çalışkan Eleren,
Burcu Şengül,
Fatma Olcay Topaç,
Hüseyin Savaş Başkaya
Publication year - 2011
Publication title -
journal of water and health
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.482
H-Index - 59
eISSN - 1996-7829
pISSN - 1477-8920
DOI - 10.2166/wh.2011.205
Subject(s) - bacillus subtilis , hydrogen peroxide , spore , chemistry , escherichia coli , bacteria , ultraviolet , humic acid , microbiology and biotechnology , pseudomonas aeruginosa , food science , environmental chemistry , nuclear chemistry , biochemistry , biology , organic chemistry , fertilizer , genetics , physics , quantum mechanics , gene
The aim of the present study was to evaluate responses of potential indicator bacteria (i.e. Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis) to the ultraviolet (UV) radiation and the UV/hydrogen peroxide (H₂O₂) disinfection processes of surface waters with different qualities in terms of humic content. The UV and the UV/H₂O₂ processes were applied to waters containing various concentrations of fulvic acid in order to inactivate E. coli, P. aeruginosa and B. subtilis spores. Three fulvic acid (0, 2 and 6 mg l(-1)) and four H₂O₂ (0, 10, 25 and 50 mg l(-1)) concentrations were used. Results showed that the k values of E. coli, P. aeruginosa and B. subtilis spores varied between 2.22 and 4.00, 1.73 and 3.58, and 1.40 and 1.86, respectively, in all test conditions. The sensitivity of the test organisms followed a decreasing order of E. coli > P. aeruginosa > B. subtilis. Results of the study indicated that the blocking effect of fulvic acid for the UV light was diminished by using H₂O₂ in combination with the UV radiation. Findings of the present study strongly suggested that the UV/H₂O₂ process was significantly effective on the inactivation of E. coli and P. aeruginosa in humic waters, whereas it induced little or no apparent contribution to the disinfection efficiency of B. subtilis spores.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom