Human health risk assessment through the comparative analysis of diverse irrigation regimes for Luffa (Luffa cylindrica (L.) Roem.)
Author(s) -
Zafar Iqbal Khan,
İlker Uğulu,
Shagufta Sahira,
Naunain Mehmood,
Kafeel Ahmad,
Humayun Bashir,
Yunus Doğan
Publication year - 2020
Publication title -
journal of water sanitation and hygiene for development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.414
H-Index - 22
eISSN - 2408-9362
pISSN - 2043-9083
DOI - 10.2166/washdev.2020.132
Subject(s) - wastewater , graphite furnace atomic absorption , irrigation , atomic absorption spectroscopy , phytotoxicity , metal , horticulture , chemistry , environmental chemistry , environmental science , biology , environmental engineering , agronomy , physics , organic chemistry , quantum mechanics
In the present study, the effects of untreated wastewater and associated health risks were assessed in an abundantly consumed vegetable, Luffa cylindrica. In this direction, trace metal accumulations in L. cylindrica samples irrigated with three different water regimes (municipal wastewater, groundwater, and canal water) were determined. The metal levels were defined by atomic absorption spectrophotometer equipped with a graphite furnace and D2 corrector. Trace metal concentrations in L. cylindrica samples were in the range of 7.91–9.01, 3.78–4.22, 0.54–0.63, 39.18–43.27, 15.76–20.82, 29.04–42.49, 6.96–8.24, 5.85–7.72, 4.06–4.39 and 0.18–0.42 mg/kg for Mo, As, Se, Fe, Cu, Zn, Ni, Pb, Cd and Co, respectively. The health risk index values of As, Cd, Pb, Mo, Ni, Se and Co; and pollution load index values of As, Mo, Ni, Cu, Cd and Pb were high, indicating possible phytotoxicity. As had the highest value for the pollution load index suggesting high-risk levels. High levels of some metals could be an alarm call for consumers as the vegetable is irrigated with untreated wastewater.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom