Can electrocoagulation be an effective post-treatment option for SBR treated landfill leachate and municipal wastewater mixture?
Author(s) -
Shubhrasekhar Chakraborty,
Pratap Kumar Mohanty,
Jawed Iqbal,
R. Naresh Kumar
Publication year - 2020
Publication title -
journal of water sanitation and hygiene for development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.414
H-Index - 22
eISSN - 2408-9362
pISSN - 2043-9083
DOI - 10.2166/washdev.2020.057
Subject(s) - electrocoagulation , leachate , wastewater , effluent , chemical oxygen demand , waste management , pulp and paper industry , nitrate , sewage treatment , ammonia , anode , environmental engineering , chemistry , environmental science , environmental chemistry , electrode , organic chemistry , engineering
A combined process of sequencing batch reactor (SBR) and electrocoagulation for co-treatment of landfill leachate and municipal wastewater was assessed. SBR was used in the first instance for co-treatment of 20% (v/v) landfill leachate and municipal wastewater mixture. Effluent from SBR was subjected to electrocoagulation for post-treatment, with aluminum as sacrificial anode and stainless steel as cathode. Direct current at a density of 257 A/m2 was applied during the electrocoagulation process. In electrocoagulation, spacing between the two electrodes was varied at 5 and 7 cm to assess its influence on treatment efficiency. SBR was effective to remove 65% chemical oxygen demand (COD), 77% total suspended solids (TSS), 89% ammonia, 80% nitrate, 64% phosphate and post-treatment by electrocoagulation resulted in an overall 98% COD, 98% TSS and 99% ammonia, nitrate and phosphate reduction efficiency with 5 cm of electrode spacing. Respectively, final COD, ammonia and TSS was 37, 1 and 98 mg/L after 150 min of electrocoagulation which met the Indian standards for the discharge of treated wastewater. The results highlight that SBR followed by electrocoagulation as post-treatment can be an effective option for the treatment of landfill leachate and municipal wastewater mixture.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom