A new modified nonlinear Muskingum model and its parameter estimation using the adaptive genetic algorithm
Author(s) -
Song Zhang,
Ling Kang,
Liwei Zhou,
Xiaoming Guo
Publication year - 2016
Publication title -
hydrology research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 48
eISSN - 1996-9694
pISSN - 0029-1277
DOI - 10.2166/nh.2016.185
Subject(s) - nonlinear system , estimation theory , calibration , algorithm , genetic algorithm , computer science , mathematics , mathematical optimization , statistics , physics , quantum mechanics
First, a novel nonlinear Muskingum flood routing model with a variable exponent parameter and simultaneously considering the lateral flow along the river reach (named VEP-NLMM-L) was developed in this research. Then, an improved real-coded adaptive genetic algorithm (RAGA) with elite strategy was applied for precise parameter estimation of the proposed model. The problem was formulated as a mathematical optimization procedure to minimize the sum of the squared deviations (SSQ) between the observed and the estimated outflows. Finally, the VEP-NLMM-L was validated on three watersheds with different characteristics (Case 1 to 3).Comparisons of the optimal results for the three case studies by traditional Muskingum models and the VEP-NLMM-L show that the modified Muskingum model can produce the most accurate fit to outflow data. Application results in Case 3 also indicate that the VEP-NLMM-L may be suitable for solving river flood routing problems in both model calibration and prediction stages.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom