Chemical composition of groundwaters in the Hornsund region, southern Spitsbergen
Author(s) -
Tomasz Olichwer,
Robert Tarka,
Magdalena Modelska
Publication year - 2012
Publication title -
hydrology research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 48
eISSN - 1996-9694
pISSN - 0029-1277
DOI - 10.2166/nh.2012.075
Subject(s) - geology , groundwater , permafrost , chemical composition , mineralization (soil science) , fjord , geochemistry , bedrock , dissolution , hydrology (agriculture) , geomorphology , oceanography , soil water , soil science , chemistry , geotechnical engineering , organic chemistry
Chemical composition of groundwaters was investigated in the region of the Hornsund fjord (southern Spitsbergen). The investigations were conducted during polar expeditions organized by the University of Wroclaw in two summer seasons of 2003 and 2006. Three zones of groundwater circulation: suprapermafrost, intrapermafrost and subpermafrost, were identified in areas of perennial permafrost in the region of Hornsund. The zone of shallow circulation occurs in nonglaciated (suprapermafrost) and subglacial areas. In this zone, the chemical composition of groundwater originates from initial chemical composition of precipitation, mineralogical composition of bedrock, oxidation of sulphides and dissolution of carbonates. The intermediate system of circulation is connected with water flow inside and below perennial permafrost (intrapermafrost and subpermafrost). In this zone, the chemical composition of groundwater is mainly controlled by dissolution of carbonates, ion exchange processes involving Ca 2þ substitution by Na þ , and oxidation of sulphides under oxygen-depleted conditions. The subpermafrost zone (deep groundwater circulation) occurs in deep-tectonic fractures, which are likely conduits for the descent of shallow groundwater to deeper depths. In this zone, the groundwater shows lower mineralization comparing to intrapermafrost zone and has a multi-ion nature Cl–HCO3–Na-Ca–Mg.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom