MultiRain: a GIS-based tool for multi-model estimation of regional design rainfall for scientists and practitioners
Author(s) -
Susanna Grasso,
Andrea Libertino,
Pierluigi Claps
Publication year - 2019
Publication title -
journal of hydroinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.654
H-Index - 50
eISSN - 1465-1734
pISSN - 1464-7141
DOI - 10.2166/hydro.2019.016
Subject(s) - python (programming language) , computer science , scripting language , estimation , geographic information system , web application , data mining , operations research , geography , cartography , world wide web , engineering , systems engineering , operating system
Extreme rainfall estimation is a long-standing challenge for hydrological hazard assessment and infrastructure design, particularly if considering the need to deal with climate change. Advances in statistical methods and in rainfall data availability allow for frequent updates of regional rainfall frequency analyses. These allow for new estimates that, however, cannot simply replace older ones in the risk management, due to technical, socio-economic and legislative reasons. To preserve compatibility between old and new regional estimates a multi-model approach could be used, where model uncertainties can be combined to help reach a final decision. To make this possible, one has to face the uneasy retrieval of data and results of older analyses and, quite often, non-trivial areal rainfall estimates are needed with all methods. To give an answer to these technical needs, a tool named MultiRain has been developed. The tool computes depth–duration–frequency (DDF) curves, both related to a point and integrated over an area, from multiple regional statistical analyses. The MultiRain procedure is based on Python scripting, geographic information system (GIS) functions and web technologies, and can be performed via web browser or in a desktop GIS environment. A demonstration version has been built using four different regional analyses proposed in a 20-year period for the north-west of Italy.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom