z-logo
open-access-imgOpen Access
Managing large multidimensional hydrologic datasets: A case study comparing NetCDF and SciDB
Author(s) -
Haicheng Liu,
Peter van Oosterom,
T.P.M. Tijssen,
Tom Commandeur,
Wen Wang
Publication year - 2018
Publication title -
journal of hydroinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.654
H-Index - 50
eISSN - 1465-1734
pISSN - 1464-7141
DOI - 10.2166/hydro.2018.136
Subject(s) - netcdf , computer science , database , scalability , benchmark (surveying) , search engine indexing , data mining , data management , big data , information retrieval , geodesy , programming language , geography
Management of large hydrologic datasets including storage, structuring, clustering, indexing, and query is one of the crucial challenges in the era of big data. This research originates from a specific problem: time series extraction at specific locations takes a long time when a large multidimensional (MD) dataset is stored in the NetCDF classic or the 64-bit offset format. The essence of this issue lies in the contiguous storage structure adopted by NetCDF. In this research, NetCDF file-based solutions and a MD array database management system applying a chunked storage structure are benchmarked to determine the best solution for storing and querying large MD hydrologic datasets. Expert consultancy was conducted to establish benchmark sets, with the HydroNET-4 system being utilized to provide the benchmark environment. In the final benchmark tests, the effect of data storage configurations, elaborating chunk size, dimension order (spatio-temporal clustering) and compression on the query performance, is explored. Results indicate that for big hydrologic MD data management, the properly chunked NetCDF-4 solution without compression is, in general, more efficient than the SciDB DBMS. However, benefits of a DBMS should not be neglected, for example, the integration with other data types, smart caching strategies, transaction support, scalability, and out-of-the-box support for parallelization.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom