z-logo
open-access-imgOpen Access
Flood inundation forecasts using validation data generated with the assistance of computer vision
Author(s) -
Punit Kumar Bhola,
Bhavana B. Nair,
Jorge Leandro,
Sethuraman N. Rao,
Markus Disse
Publication year - 2018
Publication title -
journal of hydroinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.654
H-Index - 50
eISSN - 1465-1734
pISSN - 1464-7141
DOI - 10.2166/hydro.2018.044
Subject(s) - flood myth , computer science , data mining , artificial intelligence , geography , archaeology
Forecasting flood inundation in urban areas is challenging due to the lack of validation data. Recent developments have led to new genres of data sources, such as images and videos from smartphones and CCTV cameras. If the reference dimensions of objects, such as bridges or buildings, in images are known, the images can be used to estimate water levels using computer vision algorithms. Such algorithms employ deep learning and edge detection techniques to identify the water surface in an image, which can be used as additional validation data for forecasting inundation. In this study, a methodology is presented for flood inundation forecasting that integrates validation data generated with the assistance of computer vision. Six equifinal models are run simultaneously, one of which is selected for forecasting based on a goodness-of-fit (least error), estimated using the validation data. Collection and processing of images is done offline on a regular basis or following a flood event. The results show that the accuracy of inundation forecasting can be improved significantly using additional validation data.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom