Hydrodynamic and probabilistic modelling of storm overflow discharges
Author(s) -
Szeląg Bartosz,
Adam Kiczko,
Jan Studziński,
Lidia Dąbek
Publication year - 2018
Publication title -
journal of hydroinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.654
H-Index - 50
eISSN - 1465-1734
pISSN - 1464-7141
DOI - 10.2166/hydro.2018.005
Subject(s) - weir , probabilistic logic , outflow , storm , logistic regression , precipitation , statistical model , environmental science , meteorology , statistics , mathematics , geography , cartography
The study compares an annual number of weir overflows calculated using a hydrodynamic model by continuous simulations and a probabilistic model. The weir outflow for a single precipitation event was successfully modelled using logistic regression. Performed numerical experiments showed that the calculated number of weir outflows with the hydrodynamic model falls within confidence intervals of the probabilistic model. This suggests that the model of the logistic regression can be used in practice. The probabilistic simulations revealed that a model with a probabilistic description of a number of annual precipitations and a model with an assumed average number of such events are not consistent. The proposed methodology can be applied for the design of outflow weirs and other storm devices.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom