z-logo
open-access-imgOpen Access
Multi-objective optimization for sustainable groundwater management by developing of coupled quantity-quality simulation-optimization model
Author(s) -
Asghar Kamali,
Mohammad Hossein Niksokhan
Publication year - 2017
Publication title -
journal of hydroinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.654
H-Index - 50
eISSN - 1465-1734
pISSN - 1464-7141
DOI - 10.2166/hydro.2017.007
Subject(s) - modflow , multi objective optimization , groundwater recharge , simulation based optimization , pareto principle , stability (learning theory) , simulation modeling , index (typography) , computer science , sustainability , aquifer , groundwater , environmental science , mathematical optimization , engineering , mathematics , ecology , geotechnical engineering , mathematical economics , machine learning , world wide web , biology
This study addresses the issue of optimal management of aquifers using a mathematical simulation- optimization model which relies on the stability of water quality and quantity, considering salinity. In this research first we developed a hydrological model (SWAT) to estimate recharge rates and its spatiotemporal distribution. Then, groundwater simulation of the basin was simulated and calibrated using MODFLOW 2000 and water quality was simulated and calibrated using MT3DMS. Afterwards, a multi-objective optimization model (MOPSO) and embed simulation models as tools to assess the objective function was carried out in order to produce a simulation-optimization model. Finally, a sustainability index to assess Pareto front9s answers and three management scenarios (continuing previous operation, 30% increasing and reduction in previous operation) was developed. The results show that the majority of Pareto optimal answers have more sustainability index than a 30% reduction of operation with the best answer of 0.059. Relatively, the sustainability index of 30% reduction of operation is 0.05.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom