z-logo
open-access-imgOpen Access
Evaluation of CMPA precipitation estimate in the evolution of typhoon-related storm rainfall in Guangdong, China
Author(s) -
Dashan Wang,
Xianwei Wang,
Lin Liu,
Dagang Wang,
Huabing Huang,
Cuilin Pan
Publication year - 2016
Publication title -
journal of hydroinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.654
H-Index - 50
eISSN - 1465-1734
pISSN - 1464-7141
DOI - 10.2166/hydro.2016.241
Subject(s) - typhoon , precipitation , rain gauge , environmental science , storm , climatology , meteorology , flooding (psychology) , atmospheric sciences , geography , geology , psychology , psychotherapist
The recently emerging CMPA product generated for continental China has relatively high spatial and temporal resolution (hourly and 0.1 °), while few studies have applied it to investigate the typhoon-related extreme rainfall. This study evaluates the CMPA estimate in quantifying the typhoon-related extreme rainfall using a dense rain gauge network in Guangdong Province, China. The results show that the event-total precipitation from CMPA is generally in agreement with gauges by relative bias (RB) of 2.62, 10.74 and 0.63% and correlation coefficients (CCs) of 0.76, 0.86 and 0.91 for typhoon Utor, Usagi and Linfa events, respectively. At the hourly scale, CMPA underestimates the occurrence of light rain ( 16 mm/h), while overestimates the occurrence of moderate rain. CMPA shows high probability of detection (POD = 0.93), relatively large false alarm ratio (FAR = 0.22) and small missing ratio (0.07). CMPA captures the spatial patterns of typhoon-related rain depth, and is in agreement with the spatiotemporal evolution of hourly gauge observations by CC from 0.93 to 0.99. In addition, cautiousness should be taken when applying it in hydrologic modeling for flooding forecasting since CMPA underestimates heavy rain (>16 mm/h).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom