Multiple-fault detection in water pipelines using transient-based time-frequency analysis
Author(s) -
Jilong Sun,
Ronghe Wang,
HuanFeng Duan
Publication year - 2016
Publication title -
journal of hydroinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.654
H-Index - 50
eISSN - 1465-1734
pISSN - 1464-7141
DOI - 10.2166/hydro.2016.232
Subject(s) - pipeline transport , transient (computer programming) , hilbert–huang transform , leakage (economics) , pipeline (software) , fault (geology) , engineering , computer science , reliability engineering , geology , white noise , mechanical engineering , environmental engineering , seismology , economics , macroeconomics , operating system , telecommunications
Pipe faults, such as leakage and blockage, commonly exist in water pipeline systems. It is essential to identify and fix these failures appropriately in order to reduce the risk of water pollution and enhance the security of water supply. Recently, transient-based detection methods have been developed for their advantages of non-intrusion, efficiency and economics compared to traditional methods. However, this method is so far limited mainly to simple pipelines with a single known type of pipe fault in the system. This paper aims to extend the transient-based method to multiple-fault detection in water pipelines. For this purpose, this study introduced an efficient and robust method for transient pressure signal analysis - a combination of the empirical mode decomposition and Hilbert transform - in order to better identify and detect different anomalies (leakage, blockage and junction) in pipelines. To validate the proposed transient-based time-frequency analysis method, laboratory experimental tests were conducted in this study for a simple pipeline system with multiple unknown types of pipe faults including leakages, blockages and junctions. The preliminary test results and analysis indicate that multiple pipe faults in simple pipelines can be efficiently identified and accurately located by the proposed method.Department of Civil and Environmental Engineerin
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom