z-logo
open-access-imgOpen Access
Real-time correction of antecedent precipitation for the Xinanjiang model using the genetic algorithm
Author(s) -
Shengli Liao,
Gang Li,
Qianying Sun,
Zhifu Li
Publication year - 2016
Publication title -
journal of hydroinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.654
H-Index - 50
eISSN - 1465-1734
pISSN - 1464-7141
DOI - 10.2166/hydro.2016.168
Subject(s) - genetic algorithm , stability (learning theory) , flood myth , computer science , precipitation , mean squared error , flood forecasting , algorithm , environmental science , statistics , mathematics , meteorology , machine learning , geography , archaeology
The Xinanjiang model has been successfully and widely applied in humid and semi-humid regions of China for rainfall–runoff simulation and flood forecasting. However, its forecasting precision is seriously affected by antecedent precipitation (Pa). Commonly applied methods relying on the experience of individual modelers are not standardized and difficult to transfer. In particular, the Xinanjiang daily model may result in obvious errors in the determination of Pa. Thus, a practical method for estimating Pa is proposed in this paper, which is based on a genetic algorithm (GA) and is estimated during a rising flood period. In the optimization process of a GA, Pa values form a chromosome, the root-mean-squared error between the observed and simulated streamflow is chosen as the fitness function. Simultaneously, the best individual reserved strategy is adopted between correction periods to avoid complete independence between each optimization process as well as to ensure the stability of the algorithm. Twenty-seven historical floods observed at the gauge station of the Shuangpai reservoir in Hunan Province of China are used to test the presented algorithm for estimation of Pa, and the results demonstrate that the proposed method significantly improves flood forecasting quality of the Xinanjiang model.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom