z-logo
open-access-imgOpen Access
Source identification of sudden contamination based on the parameter uncertainty analysis
Author(s) -
Guozhen Wei,
Chi Zhang,
Yu Li,
Haixing Liu,
Huicheng Zhou
Publication year - 2016
Publication title -
journal of hydroinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.654
H-Index - 50
eISSN - 1465-1734
pISSN - 1464-7141
DOI - 10.2166/hydro.2016.002
Subject(s) - markov chain monte carlo , computer science , bayesian inference , identification (biology) , bayesian probability , inference , dram , monte carlo method , mathematical optimization , algorithm , data mining , mathematics , statistics , artificial intelligence , botany , computer hardware , biology
It is important to identify the source information after a sudden water contamination incident occurs in a water supply system. The accuracy of the simulation model9s parameters determines the accuracy of the source information. However, it is difficult to obtain the true value of these parameters by existing methods, so reduction of the errors caused by the uncertainty of these parameters is a crucial problem. A source identification framework which considers the uncertainty of the model9s sensitive parameters and combines Bayesian inference and Markov Chain Monte Carlo (MCMC) algorithms simulation is established, and the South-to-North Water Diversion Project is taken as the case study in this paper. Compared with a framework which does not consider the uncertainty of the model9s parameters, the proposed framework could solve the error caused by the wrong choice of model parameters and obtain more accurate results. In addition, the proposed framework based on traditional MCMC and that based on the Delayed Rejection and Adaptive Metropolis (DRAM-MCMC) are compared to prove that the DRAM-MCMC is more convergent and accurate. Lastly, the proposed framework based on DRAM-MCMC is proved to solve the problem with high practicality and generality in the studied long distance water diversion project.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom