z-logo
open-access-imgOpen Access
Robust sensor placement for leak location: analysis and design
Author(s) -
Joaquím Blesa,
Fatiha Nejjari,
Ramón Sarrate
Publication year - 2015
Publication title -
journal of hydroinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.654
H-Index - 50
eISSN - 1465-1734
pISSN - 1464-7141
DOI - 10.2166/hydro.2015.021
Subject(s) - leak , robustness (evolution) , sensitivity (control systems) , wireless sensor network , cluster analysis , computer science , mathematical optimization , engineering , mathematics , electronic engineering , computer network , biochemistry , chemistry , environmental engineering , machine learning , gene
In this paper, a nominal sensor placement methodology for leak location in water distribution networks is presented. To reduce the size and the complexity of the optimization problem a clustering technique is combined with the nominal sensor placement methodology. Some of the pressure sensor placement methods for leak detection and location in water distribution networks are based on the pressure sensitivity matrix analysis. This matrix depends on the network demands, which are nondeterministic, and the leak magnitudes, that are unknown. The robustness of the nominal sensor placement methodology is investigated against the fault sensitivity matrix uncertainty. Providing upon the dependency of the leak location procedure on the network operating point, the nominal sensor placement problem is then reformulated as a multi-objective optimization for which Pareto optimal solutions are generated. The robustness study as well as the resulting robust sensor placement methodology are illustrated by means of a small academic network as well as a district metered area in the Barcelona water distribution network.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom