Estimation of scour depth around circular piers: applications of model tree
Author(s) -
Amir EtemadShahidi,
Lisham Bonakdar,
DongSheng Jeng
Publication year - 2014
Publication title -
journal of hydroinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.654
H-Index - 50
eISSN - 1465-1734
pISSN - 1464-7141
DOI - 10.2166/hydro.2014.151
Subject(s) - pier , bridge (graph theory) , bridge scour , geotechnical engineering , engineering , artificial neural network , field (mathematics) , empirical modelling , data mining , computer science , structural engineering , artificial intelligence , mathematics , simulation , medicine , pure mathematics
Scour around bridge piers is one of the main causes of bridge failures and is of great importance for hydraulic engineers and scientists. Prediction of the scour depth around piers is complicated, and accurate results are rarely achieved by the existing models. Recently, data mining approaches such as artificial neural networks and fuzzy inference systems have been applied successfully to predict scour depth around hydraulic structures. In this study, an alternative robust data mining approach was used for the predictions of the scour depth around piers, and the results were compared with those of three empirical approaches. Performances of developed models were tested by experimental data sets collected in laboratory experiments and field measurements, together with existing empirical approaches. Statistical measures indicate that the proposed M5′ model provides a better prediction of scour depth than the empirical approaches.Griffith Sciences, Griffith School of EngineeringFull Tex
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom