Kernel methods for pier scour modeling using field data
Author(s) -
Mahesh Pal,
Nirmal Kumar Singh,
N. K. Tiwari
Publication year - 2013
Publication title -
journal of hydroinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.654
H-Index - 50
eISSN - 1465-1734
pISSN - 1464-7141
DOI - 10.2166/hydro.2013.024
Subject(s) - bridge scour , support vector machine , pier , kernel (algebra) , kriging , extreme learning machine , regression , field (mathematics) , mathematics , relevance vector machine , algorithm , computer science , data mining , artificial intelligence , engineering , statistics , structural engineering , artificial neural network , combinatorics , pure mathematics
Three kernel-based modeling approaches are proposed to predict the local scour around bridge piers using field data. Modeling approaches include Gaussian processes regression (GPR), relevance vector machines (RVM) and a kernlised extreme learning machine (KELM). A dataset consisting of 232 upstream pier scour measurements derived from the Bridge Scour Data Management System (BSDMS) was used. The radial basis kernel function was used with all three kernel-based approaches and results were compared with support vector regression and four empirical relations. Coefficient of determination value of 0.922, 0.922 and 0.900 (root mean square error, RMSE = 0.297, 0.310 and 0.343 m) was achieved by GPR, RVM and KELM algorithm respectively. Comparisons of results with support vector regression and Froehlich equation, Froehlich design, HEC-18 and HEC-18/Mueller predictive equations suggest an improved performance by the proposed approaches. Results with dimensionless data using all three algorithms suggest a better performance by dimensional data.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom