z-logo
open-access-imgOpen Access
Comparison of statistical methods for downscaling daily precipitation
Author(s) -
Getnet Y. Muluye
Publication year - 2012
Publication title -
journal of hydroinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.654
H-Index - 50
eISSN - 1465-1734
pISSN - 1464-7141
DOI - 10.2166/hydro.2012.197
Subject(s) - downscaling , precipitation , artificial neural network , resampling , statistics , computer science , climatology , scale (ratio) , logistic regression , environmental science , meteorology , mathematics , machine learning , geography , cartography , geology
There are several statistical downscaling methods available for generating local-scale meteorological variables from large-scale model outputs. There is still no universal single method, or group of methods, that is clearly superior, particularly for downscaling daily precipitation. This paper compares different statistical methods for downscaling daily precipitation from numerical weather prediction model output. Three different methods are considered: (i) hybrids; (ii) neural networks; and (iii) nearest neighbor-based approaches. These methods are implemented in the Saguenay watershed in northeastern Canada. Suites of standard diagnostic measures are computed to evaluate and inter-compare the performances of the downscaling models. Although results of the downscaling experiment show mixed performances, clear patterns emerge with respect to the reproduction of variation in daily precipitation and skill values. Artificial neural network-logistic regression (ANN-Logst), partial least squares (PLS) regression and recurrent multilayer perceptron (RMLP) models yield greater skill values, and conditional resampling method (SDSM) and K -nearest neighbor (KNN)-based models show the potential to capture the variability in daily precipitation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom