z-logo
open-access-imgOpen Access
Modelling and optimized water management of artificial inland waterway systems
Author(s) -
J. Wagenpfeil,
Eckhard Arnold,
Hartmut Linke,
Oliver Sawodny
Publication year - 2012
Publication title -
journal of hydroinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.654
H-Index - 50
eISSN - 1465-1734
pISSN - 1464-7141
DOI - 10.2166/hydro.2012.163
Subject(s) - model predictive control , control theory (sociology) , kalman filter , controller (irrigation) , scada , process (computing) , computer science , time horizon , engineering , control engineering , control (management) , mathematical optimization , mathematics , electrical engineering , artificial intelligence , agronomy , biology , operating system
A decision support system (DSS) for optimized operational water management of artificial inland waterways is presented. It will be deployed as part of a supervisory control and data acquisition (SCADA) system of the Mittellandkanal (MLK), a large canal structure in northern Germany, and relies on experience gained from a similar system. The DSS uses a model predictive controller with a 48 h prediction horizon to calculate optimal pump and discharge strategies that will ensure navigable water levels and at the same time minimize operational costs. The internal process model for the model predictive controller is obtained from a numerical integration of the Saint Venant equations using Godunov's method. The initial state needed for an accurate prediction is estimated using moving horizon state estimation (MHE) or unscented Kalman filtering. Additionally, the state estimation methods are used to estimate non-measurable disturbance inflows, which may have a strong impact on the control performance if not compensated for by the model predictive controller. The optimal control strategy is transformed into discrete-valued pump and discharge jobs that account for technical and operational input constraints. Closed-loop simulations with a highresolution hydrodynamic numerical model of the MLK illustrate the ability of the control algorithm to adapt to model uncertainties and non-controllable inputs

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom