z-logo
open-access-imgOpen Access
Seeking optimal groundwater pumping strategies at Pinggu District in Beijing, China
Author(s) -
Aili Yang,
Guohe Huang,
Xiaosheng Qin,
L. Li,
Wei Li
Publication year - 2012
Publication title -
journal of hydroinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.654
H-Index - 50
eISSN - 1465-1734
pISSN - 1464-7141
DOI - 10.2166/hydro.2012.006
Subject(s) - beijing , groundwater , fuzzy logic , china , environmental science , mathematical optimization , water resource management , environmental engineering , computer science , operations research , engineering , mathematics , geography , artificial intelligence , geotechnical engineering , archaeology
A simulation-based fuzzy optimization method (SFOM) was proposed for regional groundwater pumping management in considering uncertainties. SFOM enhanced the traditional groundwater management models by incorporating a response matrix model (RMM) into a fuzzy chanceconstrained programming (FCCP) framework. RMM was used to approximate the input-output relationship between pumping actions and subsurface hydrologic responses. Due to its explicit expression, RMM could be easily embedded into an optimization model to help seek cost-effective pumping solutions. A groundwater management case in Pinggu District of Beijing, China, was used to demonstrate the method's applicability. The study results showed that the obtained system cost and pumping rates would vary significantly under different confidence levels of constraints satisfaction. The decision-makers could identify the best groundwater pumping strategy through analyzing the tradeoff between the risk of violating the related water resources conservation target and the economic benefit. Compared with traditional approaches, SFOM was particularly advantageous in linking simulation and optimization models together, and tackling uncertainties using fuzzy chance constraints. © IWA Publishing 2013.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom