z-logo
open-access-imgOpen Access
Uncertainty-based automatic calibration of HEC-HMS model using sequential uncertainty fitting approach
Author(s) -
S. Jamshid Mousavi,
Karim C. Abbaspour,
Bahareh Kamali,
M. Amini,
Hong Yang
Publication year - 2011
Publication title -
journal of hydroinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.654
H-Index - 50
eISSN - 1465-1734
pISSN - 1464-7141
DOI - 10.2166/hydro.2011.071
Subject(s) - calibration , event (particle physics) , set (abstract data type) , computer science , probabilistic logic , estimation theory , uncertainty quantification , hydrological modelling , uncertainty analysis , data mining , algorithm , statistics , mathematics , simulation , artificial intelligence , machine learning , geology , physics , quantum mechanics , climatology , programming language
This study presents the application of an uncertainty-based technique for automatic calibration of the well-known Hydrologic Engineering Center-Hydrologic Modelling System (HEC-HMS) model. Sequential uncertainty fitting (SUFI2) approach has been used in calibration of the HEC-HMS model built for Tamar basin located in north of Iran. The basin was divided into seven sub-basins and three routing reaches with 24 parameters to be estimated. From the four events, three were used for calibration and one for verification. Each event was initially calibrated separately. As there was no unique parameter set identified, all events were then calibrated jointly. Based on the scenarios of separately and jointly calibrated events, different candidate parameter sets were inputted to the model verification stage where recalibration of initial abstraction parameters commenced. Some of the candidate parameter sets with no physically meaningful parameter values were withdrawn after recalibration. Then new ranges of parameters were identified based on minimum and maximum values of the remaining parameter sets. The new parameter ranges were used in an uncertainty analysis using SUFI2 technique resulting in much narrower parameter intervals that can simulate both verification and calibration events satisfactorily in a probabilistic sense. Results show that the SUFI2 technique linked to HEC-HMS as a simulation–optimization model can provide a basis for performing uncertainty-based automatic calibration of event-based hydrologic models.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom