Prediction of local scour depth at bridge piers under clear-water and live-bed conditions: comparison of literature formulae and artificial neural networks
Author(s) -
Elena Toth,
Luigia Brandimarte
Publication year - 2011
Publication title -
journal of hydroinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.654
H-Index - 50
eISSN - 1465-1734
pISSN - 1464-7141
DOI - 10.2166/hydro.2011.065
Subject(s) - pier , artificial neural network , bridge (graph theory) , mode (computer interface) , sediment transport , field (mathematics) , sediment , flow (mathematics) , geotechnical engineering , calibration , engineering , computer science , civil engineering , geology , artificial intelligence , statistics , mathematics , medicine , paleontology , geometry , pure mathematics , operating system
The scouring effect of the flowing water around bridge piers may undermine the stability of the structure, leading to extremely high direct and indirect costs and, in extreme cases, the loss of human lives. The use of Artificial Neural Network (ANN) models has been recently proposed in the literature for estimating the maximum scour depth around bridge piers: this study aims at further investigating the potentiality of the ANN approach and, in particular, at analysing the influence of the experimental setting (laboratory or field data) and of the sediment transport mode (clear water or live bed) on the prediction performances. A large database of both field and laboratory observations has been collected from the literature for predicting the maximum local scour depth as a function of a parsimonious set of variables characterizing the flow, the sediments and the pier. Neural networks with an increasing degree of specialization have been implemented ‐ using different subsets of the calibration data in the training phase ‐ and validated over an external validation dataset. The results confirm that the ANN scour depths’ predictions outperform the estimates obtained by empirical formulae conventionally used in the literature and in the current engineering practice, and demonstrate the importance of taking into account the differences in the type of available data ‐ laboratory or field data ‐ and the sediment transport mode ‐ clear water or live bed conditions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom